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The NuRDO.xls workbook is a tool to help researchers maximize the efficiency of experiments 
to determine nutritional requirements. By simulating results from different combinations of 
nutrient levels and replicates per level, researchers can explore the relationship between the 
arrangement of different inputs and the confidence in the determined requirement.

Click here to download the NuRDO workbook, which runs on all modern versions of Microsoft 
Excel with the Visual Basic function. Before starting, enable macros and activate the solver add-in.

Workbook v. 1.0
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http://www.caes.uga.edu/content/dam/caes-website/departments/poultry-science/documents/poultry-nutritionists-tool-kit/nutritional-requirement-determination-optimization.xlsm
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Why is it important to simulate nutritional response experiments?

It is always important to maximize the use of resources, particularly when animals are involved. When 
designing experiments to determine nutritional requirements, researchers are faced with a number of options. 
The researcher should consider the following questions:

• Should the experimental units be individual animals or pens of animals?
• How many animals or pens should be used for each feeding level (treatment group)?
• How many levels need to be fed to get a good estimate of the nutritional requirement?
• What is the optimal range of nutrient levels needed to best estimate a requirement?

The researcher also has to define the “best estimate of a requirement.” In other words, the researcher must 
determine an acceptable confidence interval for his or her requirement estimate.

Which regression models 
are typically used to 
estimate nutritional 
requirements?
Researchers often start analyzing response 
data by fitting a quadratic polynomial (QP) 
to it. Figure 1 shows data from a lysine 
requirement study conducted with broiler 
chickens fed seven levels of crystalline lysine 
(from 0.6 to 1.2 percent). 

The input in this case was lysine, but it could 
be any nutrient or feed additive. The output, 
or response variable, is body weight gain, 
but could be many other measured quantities, 
such as feed efficiency, bone ash blood 
parameters, etc.

When quadratic polynomials are fitted 
to response data, there is a maximum (or 
minimum) that might be interpreted as the 
“requirement.” The QP model assumes 
that there is no plateau and that the nutrient 
becomes toxic immediately after the 
maximum response is reached.

Another approach is a spline fit, where 
there is believed to be an ascending portion 
of the response and then a plateau that is 
reached when the nutrient in question neither 
increases nor decreases the animal’s response. 
The requirement for this approach is the 
intersection of the two lines. The ascending 
portion may be either linear (Figure 2, the 
broken-line linear or BLL) or quadratic 
(Figure 3, the broken-line quadratic or BLQ).

Figure 1. The quadratic polynomial approach to estimating 
nutritional requirements.

Figure 2. The broken-line linear model, a spline approach to 
estimating nutritional requirements.
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Another approach, and perhaps the most 
rational, is the Saturation Kinetics Model 
of Mercer, by Morgan and Flodin, 1975. 
It may be considered the most rational 
approach because it is a super set of the 
widely accepted Michaelis-Mentan model 
of enzyme kinetics. 

Assuming that an enzyme-catalyzed 
reaction is limiting the performance of 
an animal when any nutrient is in short 
supply, it follows that the shape of the 
response curve should be similar to that 
of the limiting reaction. 

From a practical perspective, with the 
SK model, a maximum response is never 
reached, only approached, so there is no 
requirement per se. As with the BLL and 
BLQ models, there is no parameter to 
indicate the level that the nutrient may 
become toxic.

Another approach, and perhaps the most 
rational, is the Saturation Kinetics Model 
of Mercer, by Morgan and Flodin, 1975. 
It may be considered the most rational 
approach because it is a super set of the 
widely accepted Michaelis-Mentan model 
of enzyme kinetics. 

Assuming that an enzyme-catalyzed 
reaction is limiting the performance of an 
animal when any nutrient is in short supply, 
it follows that the shape of the response 
curve should be similar to that of the 
limiting reaction. 

From a practical perspective, with the 
SK model, a maximum response is never 
reached, only approached, so there is no 
requirement per se. As with the BLL and 
BLQ models, there is no parameter to 
indicate the level that the nutrient may 
become toxic.

Because it is difficult to experimentally or 
statistically choose between the various 
models, NuRDO allows the researcher to 
choose the model he or she thinks will best 
represent what the actual data will resemble 
when the experiment is conducted.

Figure 3. The broken-line quadratic model, another spline 
approach to estimating nutritional requirements.

Figure 4. The saturation kinetics model approach to estimating 
nutritional requirements.
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What does the NuRDO workbook do?
The NuRDO workbook allows the research planner to input what he or she estimates the shape of the response 
curve to be based on history and past experiences. The research planner inputs possible combinations of nutrient 
levels and the number of observations at each level based on expected variation between replicates. 

NuRDO then simulates what the experimental outcomes might be expected to be based on the planner’s 
estimates and Excel’s random functions for normal distributions. Once the experimental outcomes are 
simulated, NuRDO determines what the best-fit models would be, including requirement estimates for each of 
the models. 

Confidence intervals are calculated for the requirement from each simulated experiment. The combination 
of levels and replications with the lowest confidence intervals for the requirement should indicate the most 
efficient use of resources.

What does the NuRDO workbook consist of?
The “Levels and Reps” spreadsheet is used to create a grid with combinations of levels and replications for 
the simulations (Figure 5). The numbers in the grid can be changed manually to have unequal numbers of 
observations at any level. The cell contents can simply be erased or written over to achieve any combinations up 
to 25 nutrient levels and 20 replicates.

Step 1: Choose the nutrient levels and numbers of replicates.

The “Simulations” spreadsheet is used to input what the shape of the response is expected to be. One of the 
response models must be chosen to represent what is believed to be the true shape of the response (Figure 6). 

Figure 5. The “Levels & Reps” spreadsheet used to create the grid for simulating experiments.
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Step 2: Input your best guess of what the response curve really is.

Fitting non-linear models is an iterative process involving initial parameter estimates. Initial parameter estimates 
for the BLL and BLQ models are fairly straightforward. Visual inspection of the data should allow fair estimates 
of the maximum response and the break-point requirement. The rate constants are more difficult, but can usually 
be found fairly quickly by trial and error. The QP model parameters can be found by graphing the data in 
Excel, fitting a second order polynomial, and asking for the equation to be displayed. The SK model maximum, 
intercept and rate constant (input level at half maximal response can be estimated by visual inspection, and the 
rate constant found by making guesses. The parameter estimates in Figure 7 are the same as those in Figure 6. 

For this example, the four models were already fitted to the data, but that is not necessary. One or all four 
models can be fitted to the same data. But if you fit different models at different times, there will be different 
simulation data each time the program is run.

Step 3: Choose the model(s) and input initial parameters for each model to be run.

Figure 6. The “Simulations” spreadsheet section used to describe the model for simulating experiments.

Figure 7. The “Simulations” spreadsheet section used to input the initial model parameters 
for fitting curves to the simulated experimental data.
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In order to plan an experiment, it is always important to know how much variation normally exists between 
individuals or pens of individuals subjected to the same experimental treatments (levels). It helps to reduce 
variation by choosing one gender or equalizing pen starting weights, etc. When the number of experiments 
to simulate and CV have been inputted, choose “Run Simulations” and see how long it takes to compute the 
model(s) entered. If the models fit quickly, more “Experiments” can be specified. The more experiments that are 
simulated, the better the parameter estimates will be.

Step 4: Input the number of experiments to be simulated and the CV (mean/standard 
deviation), and click “Run”!

The number of simulated experiments is chosen based on the speed of the computer being used and the patience 
of the operator. With small CVs, stable confidence interval estimates will be achieved with fewer experimental 
simulations. For most problems, 20 to 100 experiment simulations should result in stable coefficient estimates. 
But since the calculations are based on random number generation, the results should be different each time 
the “Run Simulations” button is activated. If you consider them only slightly different each time the “Run 
Simulations” button is activated, then you are probably simulating enough experiments.

Figure 8. The “Simulations” spreadsheet section used to input the number of experiments 
to be simulated and the coefficient of variation expected, or normally observed, for the 
genetic strains to be used and the environmental conditions they will be kept in. 

Figure 9. The “Simulations” spreadsheet is also used to display NuRDO results.



UGA Cooperative Extension Bulletin 1468  •  Nutritional Response Determination Optimization 7

NuRDO displays the results of each simulated experiment. In the example in Figure 9, the 5 experiments 
simulated resulted in nutrient requirement estimates of 1.029 to 1.083 percent (the actual requirement input 
was 1.057 percent). The results for each simulation are displayed on a different row and the average statistics 
are displayed on the top. In this case only 5 simulations resulted in an estimate of 1.055 ± 0.034, very close to 
and including the actual parameter value. The key number displayed is the SE of requirement, indicating the 
confidence interval of 1.055 ± 0.034. The actual mean has about a 66 percent chance of being between 1.021 
and 1.089.

How is the NuRDO workbook used?
The NuRDO workbook can be used to estimate nutritional requirements and their expected confidence intervals 
from different combinations of nutrient levels and replication, expected variation, and the spacing or range of 
nutrient levels to use. Figure 10 shows the results from a series of simulations with different numbers of levels 
and pens per level. 

Step 5: Compare the results of using different levels and reps per level on the 
standard error of the requirement estimate, or other output parameter. 

When pens of animals are used, the pen-to-pen variation can be reduced by adding more animals to each pen, 
selecting more uniform animals, etc. The decision of what levels and reps to use depends on the goals of the 
trial and resources available.

How are the results interpreted? 
Since the goal of nutritional requirement studies is to determine the requirement or breakpoint of one of the 
broken-line models, the standard error of the requirement estimate is the indication of experimental power. The 
smaller the error in estimating the requirement, the more powerful the experiment is.

In the example in Figure 10, there is some advantage in using 24 pens instead of 16 (Row 1 vs. Row 3) if the 
number of replicate pens per level is increased (not number of levels; Row 1 vs. Row 4). Doubling the size and 
expense of the experiment to 48 pens resulted in a decrease in the expected standard error of the requirement, 
but the results are very similar with greater numbers of reps per nutrient level or more nutrient levels with 
the same number of reps (Rows 5 and 6 vs. Rows 2 and 3). Further doubling of the size and expense of the 
experiment resulted in another decrease in the expected standard error (Rows 5 and 6 vs. Row 7). Similar 
comparisons should be made with range of nutrient levels and the coefficient of variation. 

Figure 10. Simulations of lysine requirements based on BLL model, 100 simulations, 8 
percent CV and a lysine range of 0.7 to 1.5 percent. Actual requirement = 1.057 percent.
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